An Adaptive Block Bregman Proximal Gradient Method for Computing Stationary States of Multicomponent Phase-Field Crystal Model

نویسندگان

چکیده

In this paper, we compute the stationary states of multicomponent phase-field crystal model by formulating it as a block constrained minimization problem. The original infinite-dimensional non-convex problem is approximated finite-dimensional after an appropriate spatial discretization. To efficiently solve above optimization problem, propose so-called adaptive Bregman proximal gradient (AB-BPG) algorithm that fully exploits problem's structure. proposed method updates each order parameter alternatively, and update blocks can be chosen in deterministic or random manner. Besides, choose step size developing practical linear search approach such generated sequence either keeps energy dissipation has controllable subsequence with dissipation. convergence property established without requirement global Lipschitz continuity derivative bulk part using divergence. numerical results on computing ordered structures binary, ternary, quinary component coupled-mode Swift-Hohenberg models have shown significant acceleration over many existing methods.

منابع مشابه

an application of equilibrium model for crude oil tanker ships insurance futures in iran

با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...

An efficient algorithm for solving the phase field crystal model

We present and discuss the development of an unconditionally stable algorithm used to solve the evolution equations of the Phase Field Crystal (PFC) model. This algorithm allows for an arbitrarily large algorithmic time step. As the basis for our analysis of the accuracy of this algorithm, we determine an effective time step in Fourier space. We then compare our calculations with a set of repre...

متن کامل

An Accelerated Proximal Coordinate Gradient Method

We develop an accelerated randomized proximal coordinate gradient (APCG) method, for solving a broad class of composite convex optimization problems. In particular, our method achieves faster linear convergence rates for minimizing strongly convex functions than existing randomized proximal coordinate gradient methods. We show how to apply the APCG method to solve the dual of the regularized em...

متن کامل

Proximal-Like Incremental Aggregated Gradient Method with Linear Convergence under Bregman Distance Growth Conditions

We introduce a unified algorithmic framework, called proximal-like incremental aggregated gradient (PLIAG) method, for minimizing the sum of smooth convex component functions and a proper closed convex regularization function that is possibly non-smooth and extendedvalued, with an additional abstract feasible set whose geometry can be captured by using the domain of a Legendre function. The PLI...

متن کامل

An Adaptive Accelerated Proximal Gradient Method and its Homotopy Continuation for Sparse Optimization

We first propose an adaptive accelerated proximal gradient (APG) method for minimizing strongly convex composite functions with unknown convexity parameters. This method incorporates a restarting scheme to automatically estimate the strong convexity parameter and achieves a nearly optimal iteration complexity. Then we consider the l1regularized least-squares (l1-LS) problem in the high-dimensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: CSIAM transaction on applied mathematics

سال: 2022

ISSN: ['2708-0560', '2708-0579']

DOI: https://doi.org/10.4208/csiam-am.so-2021-0002